COSC312: Assignment 1

Due: 21/8/2023

Instructions

- All work is to be submitted by email to michael.albert@otago.ac.nz by midnight on the due date.
- PDF format for text documents is preferred.
- Note that this assignment has two pages - there are a total of ten marks available.

Problems

1. The inhabitants of Cryptologia use a ten character alphabet where the characters are the digits $0,1,2, \ldots, 9$. This makes implementing Vigenère ciphers rather simple-you just take a sequence of digits, repeat it as often as necessary and add it to the text, discarding any carries. The only statistical non-uniformities that have been observed in (unencrypted) Cryptologian texts are that successive letters are never the same. That is, the pairs $00,11,22, \ldots, 88$, and 99 never occur as consecutive letters. In fact, any sequence of digits that does not contain a repeated pair like this is a valid Cryptologian text.
(a) How would you propose determining the likely key length for a Vigenère cipher based on Cryptologian from a ciphertext? [2 points]
(b) If you know the key length, can you ever be certain about what the key is? Why, or why not?
[1 point]
(c) You will receive by email a message encoded from Cryptologian using a Vigenère cipher. Try to determine the key length and as much information as possible about the key. Explain your methods and submit any program you used.
[3 points]
2. Neither of the following pseudo-random generators are secure (for fairly trivial reasons). In each case, demonstrate this fact by giving an efficient statistical test with a significant advantage over the generator.
(a) $G:\{0,1\}^{24} \rightarrow\{0,1\}^{48}$ where $G(k)$ is just two copies of k concatenated together.
[1 point]
(b) $G:\{0,1\}^{63} \rightarrow\{0,1\}^{70}$ where $G(k)$ is k concatenated with the sevenbit binary representation (including leading zeros) of the number of 1's in k.
[1 point]
3. Suppose that $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}$ is a secure pseudo-random generator. Which, if any, of the following modifications of G is also secure? Explain your answer in each case. A sentence or two will suffice.
(a) $H(k)$ which is defined from $G(k)$ by taking the exclusive-or of $G(k)$ and the sequence $010101 \ldots$ of alternating 0 's and 1 's. [1 point]
(b) $H(k)$ which is defined from $G(k)$ by appending the exclusive-or of the bits in $G(k)$ (that is, $H(k)=G(k) 0$ if the number of 1-bits in $G(k)$ is even, and $H(k)=G(k) 1$ if the number of 1-bits in $G(k)$ is odd).
[1 point]
