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Learning objectives

• Consider reliability as a key part of computer security 

• Encourage you to always design for failure 

• Appreciate how decentralised consensus helps 
security aspects such as reliability & non-repudiation 

• Gain an initial view of blockchain approaches and 
how they support bitcoin, and other emerging 
decentralised autonomous systems
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Securing valid results on fallible machines

• Digital devices suffer (non-malicious) failures 
• RAM corruption errors—c.f., ECC memory 
• Storage media may fade or malfunction 
• Beware cheap writable optical media or flash storage 
• SSD devices fail very differently from magnetic hard drives… 

• Also may have vulnerability to critical software failures: 
• filesystem bugs 
• compression library bugs 
• system use contrary to supported operation
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One solution: rerun your computations

• If you can estimate the probability of failures, you can 
determine how many trials of a computation you need 
to achieve a given level of confidence in the result 
• Excessive system failures may become overshadowed by 

other concerns anyway… 

• Of course multiple trials need not be run in serial: 
• can structure repeatability within a software service 
• cloud computing provides convenient elasticity for parallelism
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Aside: machines designed to fail frequently

• Computers have adjustable reliability 
• Can trade off against speed, power consumption, etc. 
• Consider the practice of overclocking CPUs: 
• may need to apply CPU voltage adjustments; 
• may affect reliability of computation—possibly catastrophically! 

• Computer participates in a group repeating results? 
• Can purposefully design such a computer to be less reliable 
• May end up with a net saving in this resource trade-off
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Distributed consensus—trustworthy results

• Common in more than just storage systems, e.g.: 
• Primary/primary relational database server replication 
• NoSQL: e.g., use of gossip protocols and eventual consistency 
• Network infrastructure such as routers with hot spares 

• Systems now exist that just handle consensus gathering 
• e.g., Apache ZooKeeper, etcd offer distributed synchronisation 
• Apache ZooKeeper used in other systems: Hadoop, HBase, … 
• etcd used as main configuration database in Kubernetes
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Apache ZooKeeper & etcd

• Essentially multi-server, key-value database systems 
• However, emphasis is on correctness and synchronisation 
• ZooKeeper introduced to Hadoop to address complex failures: 

coordinates & manages scheduling of map-reduce tasks 
• etcd, e.g., facilitates updating clusters without breaking them 

• Key property: facilitates atomic broadcast 
• Under atomic broadcast all correct processes in a distributed 

system receive the same sequence of events, or all abort
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Distributed consensus algorithms

• Fischer Lynch Paterson impossibility result (1985): 
• Consistency protocols pick 2 of: safety, liveness, fault tolerance 

• Paxos: fault tolerant consensus over distributed nodes 
• Used widely, including within Apache ZooKeeper 

• Raft: alternative to Paxos, used by etcd 
• Raft algorithm easier to understand and implement than Paxos 
• Sub-problem 1: leader election 
• Sub-problem 2: log (i.e., data) replication by leader to followers 

• EPaxos: more complex and efficient than Paxos

8COSC312 / COSC412 Lecture 7, 2023



Add in potentially malicious parties

• ZooKeeper, etcd are used when we trust all servers: 
e.g., they are owned by one organisation 

•When malicious parties may be participating, the 
consensus set size must grow 
• Need a majority of votes from the assumed-benign server set 

• Could we choose not to control the server set? 
• Enter permissionless blockchains, e.g., bitcoin 
• Safety presumed if 50% of nodes are benign (isn’t quite right!)
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Different types of fault tolerance

• Crash fault tolerance (CFT) 
• Crash faults are what the name suggests: a node disappears 

• CFT usually tolerates  failures within  distributed nodes 

• So a majority of nodes must agree 

• Byzantine fault tolerance (BFT) 
• Byzantine faults include nodes acting maliciously 
• Malicious node may be actively trying to break a given protocol 

• BFT usually tolerates  failures within  distributed nodes 

• Raft & Paxos are only CFT; variants of Paxos are BFT

N
2 N

N
3 N

10COSC312 / COSC412 Lecture 7, 2023



Warm up exercise: build a cryptocurrency

• How do we make a cryptocurrency ‘coin’? 

• How do we identify coin owners? 

• How can we protect the system from forgery? 

• How do we record ownership and transfer of 
ownership? 

• Can copy digital assets perfectly, so how can coins be 
single-use?
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Distributed consensus needs within bitcoin

• To work, currencies need to track who has what 
• Normal currency uses TTPs such as mint, banks, etc. 

• bitcoin has all validating nodes store the whole ledger 
• Distributed ledger is sequence of blocks of transactions 
• Collectively agreeing transaction order avoids double-spending 

• A wallet is a hash of a public key a client generates 
• Own private key? Can prove your connection to transactions 
• … don’t actually need a representation of ₿ apart from ledger
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Proof of work—validate ₿ transactions

• Must protect validation from Sybil attacks, so: 
• Make it computationally costly to incorporate new transactions 
• move to how much computing power you control, not just the 

number of identities that you control (i.e., the basis of Sybil attacks) 

• Make it rewarding to incorporate new transactions—more later 

• Validator collects transactions into a block 
• checks transactions internally first—could be double spending 
• forms Merkle tree over transaction hashes (see later slides…) 
• to close off the block, it applies proof of work algorithm
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bitcoin transaction validation

• Proof of work must be easy to check; hard to compute 
• In some ways like a hard-to-apply digital signature 

• bitcoin: must find a nonce that when appended to the 
block of transactions+ gives a hash value less than target 
• SHA-256 hash function used, specifically 
• Target is dynamic: ensures blocks take ~10 minutes to compute, 

regardless of changes in net computational resources available 

• Mid-August 2023: bitcoin blockchain is about 504.38 GB
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Blockchain approaches predate bitcoin

• Blockchain because new block includes hash of 
previous block 
• Thus records’ integrity checks are linked together sequentially 

• Linked hashes widely used before bitcoin (2008), e.g.: 
• Git (2005) chains hashes to preserve integrity of whole history 
• (Git’s rebase operation can be disruptive: hashes get changed) 

• Solaris ZFS (2006) forms trees of hashes to confirm the integrity 
of stored files and folders 
• Let’s explore Merkle trees in more detail…
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Merkle tree: efficient integrity checking

• Consider a set of data blocks , then: 
• A hash value is computed for each data block   

• A tree is built, with parent hash hashing hashes of its children 
• The root hash will thus summarise all the data blocks 

• Checking hash on particular  can be done cheaply 
• Get trusted root hash; other hashes can come from anywhere 
• Used within Bittorrent to check blocks retrieved build valid file 
• Also with ZFS, within bitcoin transaction blocks, etc.
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Merkle tree depiction

• Leaf data blocks 
may be any size 

• All upper blocks 
Hxx are fixed size 

• Need good Htop  
• After that, Hxx from untrusted sources OK: still integrity-checked 

• Secure implementation needs a few more details 
• e.g., Hxx blocks must not be able to be passed off as leaf data
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Leaf 1 data Leaf 2 data Leaf 3 data Leaf 4 data

H11=
hash(Leaf 4 data)

H10=
hash(Leaf 3 data)

H01=
hash(Leaf 2 data)

H00=
hash(Leaf 1 data)

H0=
hash(H00 | H01)

H1=
hash(H10 | H11)

Htop=
hash(H0 | H1)



Validators, mining, fees and the network

• Bitcoin miners are carrying out validation of blocks 

• Two incentives for miners to solve block hash task: 
• reward of 6.25 bitcoin since May 2020; around NZ$216,000 (ish) 
• value halves periodically; was 50₿ in 2009! 

• by 2140 CE no further bitcoin increase 

• ability to levy fees—commercial competition applies 

• Broadcast communication between miners uses a 
peer-to-peer protocol 
• avoids central infrastructure… and knowing the miner set (!)
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Results from block validation

• Rate is ~10 minutes, but this is probabilistic 
• e.g., might guess an appropriate nonce first off (if really lucky) 

• Automatically helps serialisation: variance in mining 
time is larger than the message broadcast time 
• Miners want to publish results ASAP so to receive payment 
• (Some potential attacks do involve holding back a solution.) 

• Still possible for multiple answers to be broadcast, so…
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Blockchain forks need to be resolved

•When nodes hear multiple solutions they keep them all 

• Subsequent mining is only done on your longest fork 
• Extremely unlikely that parallel forks will continue for long 
• Software bugs can cause long-lived forks—have happened! 
• Probability distribution likely to clearly favour one branch 

• Attacker with significant resources can try to keep fork 
alive, but cost, coordination and probability won’t help 
• (Some attacks involve late revealing of privately mined forks.)
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How/when is a transaction approved?

• Clearly the transaction has to be recorded in a block 

• Two simple rules are applied: 
• Relevant block must be in the longest fork of blockchain 
• Five or more blocks must already follow it in the blockchain 

• This causes a transaction clearing delay (in effect) 
• Consider possible attacks, e.g., partitioning of network 
• Probably impractically difficult to effect
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Conclusion

• Failures can threaten security by affecting availability 
• Hardware and software problems 

• Efficient means exist to reach decentralised consensus: 
• Merkle trees for checking integrity 
• Apache ZooKeeper, and etcd, within a known set 
• Proof-of-work within permissionless blockchain such as bitcoin 

• Discussed at high level blockchain & how bitcoin works
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