
Reliability, distributed
consensus & bitcoin

COSC312 / COSC412

Learning objectives

• Consider reliability as a key part of computer security

• Encourage you to always design for failure

• Appreciate how decentralised consensus helps
security aspects such as reliability & non-repudiation

• Gain an initial view of blockchain approaches and
how they support bitcoin, and other emerging
decentralised autonomous systems

2COSC312 / COSC412 Lecture 7, 2023

Securing valid results on fallible machines

• Digital devices suffer (non-malicious) failures
• RAM corruption errors—c.f., ECC memory
• Storage media may fade or malfunction
• Beware cheap writable optical media or flash storage
• SSD devices fail very differently from magnetic hard drives…

• Also may have vulnerability to critical software failures:
• filesystem bugs
• compression library bugs
• system use contrary to supported operation

3COSC312 / COSC412 Lecture 7, 2023

One solution: rerun your computations

• If you can estimate the probability of failures, you can
determine how many trials of a computation you need
to achieve a given level of confidence in the result
• Excessive system failures may become overshadowed by

other concerns anyway…

• Of course multiple trials need not be run in serial:
• can structure repeatability within a software service
• cloud computing provides convenient elasticity for parallelism

4COSC312 / COSC412 Lecture 7, 2023

Aside: machines designed to fail frequently

• Computers have adjustable reliability
• Can trade off against speed, power consumption, etc.
• Consider the practice of overclocking CPUs:
• may need to apply CPU voltage adjustments;
• may affect reliability of computation—possibly catastrophically!

• Computer participates in a group repeating results?
• Can purposefully design such a computer to be less reliable
• May end up with a net saving in this resource trade-off

5COSC312 / COSC412 Lecture 7, 2023

Distributed consensus—trustworthy results

• Common in more than just storage systems, e.g.:
• Primary/primary relational database server replication
• NoSQL: e.g., use of gossip protocols and eventual consistency
• Network infrastructure such as routers with hot spares

• Systems now exist that just handle consensus gathering
• e.g., Apache ZooKeeper, etcd offer distributed synchronisation
• Apache ZooKeeper used in other systems: Hadoop, HBase, …
• etcd used as main configuration database in Kubernetes

6COSC312 / COSC412 Lecture 7, 2023

Apache ZooKeeper & etcd

• Essentially multi-server, key-value database systems
• However, emphasis is on correctness and synchronisation
• ZooKeeper introduced to Hadoop to address complex failures:

coordinates & manages scheduling of map-reduce tasks
• etcd, e.g., facilitates updating clusters without breaking them

• Key property: facilitates atomic broadcast
• Under atomic broadcast all correct processes in a distributed

system receive the same sequence of events, or all abort

7COSC312 / COSC412 Lecture 7, 2023

Distributed consensus algorithms

• Fischer Lynch Paterson impossibility result (1985):
• Consistency protocols pick 2 of: safety, liveness, fault tolerance

• Paxos: fault tolerant consensus over distributed nodes
• Used widely, including within Apache ZooKeeper

• Raft: alternative to Paxos, used by etcd
• Raft algorithm easier to understand and implement than Paxos
• Sub-problem 1: leader election
• Sub-problem 2: log (i.e., data) replication by leader to followers

• EPaxos: more complex and efficient than Paxos

8COSC312 / COSC412 Lecture 7, 2023

Add in potentially malicious parties

• ZooKeeper, etcd are used when we trust all servers:
e.g., they are owned by one organisation

•When malicious parties may be participating, the
consensus set size must grow
• Need a majority of votes from the assumed-benign server set

• Could we choose not to control the server set?
• Enter permissionless blockchains, e.g., bitcoin
• Safety presumed if 50% of nodes are benign (isn’t quite right!)

9COSC312 / COSC412 Lecture 7, 2023

Different types of fault tolerance

• Crash fault tolerance (CFT)
• Crash faults are what the name suggests: a node disappears

• CFT usually tolerates failures within distributed nodes

• So a majority of nodes must agree

• Byzantine fault tolerance (BFT)
• Byzantine faults include nodes acting maliciously
• Malicious node may be actively trying to break a given protocol

• BFT usually tolerates failures within distributed nodes

• Raft & Paxos are only CFT; variants of Paxos are BFT

N
2 N

N
3 N

10COSC312 / COSC412 Lecture 7, 2023

Warm up exercise: build a cryptocurrency

• How do we make a cryptocurrency ‘coin’?

• How do we identify coin owners?

• How can we protect the system from forgery?

• How do we record ownership and transfer of
ownership?

• Can copy digital assets perfectly, so how can coins be
single-use?

11COSC312 / COSC412 Lecture 7, 2023

Distributed consensus needs within bitcoin

• To work, currencies need to track who has what
• Normal currency uses TTPs such as mint, banks, etc.

• bitcoin has all validating nodes store the whole ledger
• Distributed ledger is sequence of blocks of transactions
• Collectively agreeing transaction order avoids double-spending

• A wallet is a hash of a public key a client generates
• Own private key? Can prove your connection to transactions
• … don’t actually need a representation of ₿ apart from ledger

12COSC312 / COSC412 Lecture 7, 2023

Proof of work—validate ₿ transactions

• Must protect validation from Sybil attacks, so:
• Make it computationally costly to incorporate new transactions
• move to how much computing power you control, not just the

number of identities that you control (i.e., the basis of Sybil attacks)

• Make it rewarding to incorporate new transactions—more later

• Validator collects transactions into a block
• checks transactions internally first—could be double spending
• forms Merkle tree over transaction hashes (see later slides…)
• to close off the block, it applies proof of work algorithm

13COSC312 / COSC412 Lecture 7, 2023

bitcoin transaction validation

• Proof of work must be easy to check; hard to compute
• In some ways like a hard-to-apply digital signature

• bitcoin: must find a nonce that when appended to the
block of transactions+ gives a hash value less than target
• SHA-256 hash function used, specifically
• Target is dynamic: ensures blocks take ~10 minutes to compute,

regardless of changes in net computational resources available

• Mid-August 2023: bitcoin blockchain is about 504.38 GB

14COSC312 / COSC412 Lecture 7, 2023 + and other things we are not talking about

Blockchain approaches predate bitcoin

• Blockchain because new block includes hash of
previous block
• Thus records’ integrity checks are linked together sequentially

• Linked hashes widely used before bitcoin (2008), e.g.:
• Git (2005) chains hashes to preserve integrity of whole history
• (Git’s rebase operation can be disruptive: hashes get changed)

• Solaris ZFS (2006) forms trees of hashes to confirm the integrity
of stored files and folders
• Let’s explore Merkle trees in more detail…

15COSC312 / COSC412 Lecture 7, 2023

Merkle tree: efficient integrity checking

• Consider a set of data blocks , then:
• A hash value is computed for each data block

• A tree is built, with parent hash hashing hashes of its children
• The root hash will thus summarise all the data blocks

• Checking hash on particular can be done cheaply
• Get trusted root hash; other hashes can come from anywhere
• Used within Bittorrent to check blocks retrieved build valid file
• Also with ZFS, within bitcoin transaction blocks, etc.

Di
Di

Di

16COSC312 / COSC412 Lecture 7, 2023

Merkle tree depiction

• Leaf data blocks
may be any size

• All upper blocks
Hxx are fixed size

• Need good Htop
• After that, Hxx from untrusted sources OK: still integrity-checked

• Secure implementation needs a few more details
• e.g., Hxx blocks must not be able to be passed off as leaf data

17COSC312 / COSC412 Lecture 7, 2023

Leaf 1 data Leaf 2 data Leaf 3 data Leaf 4 data

H11=
hash(Leaf 4 data)

H10=
hash(Leaf 3 data)

H01=
hash(Leaf 2 data)

H00=
hash(Leaf 1 data)

H0=
hash(H00 | H01)

H1=
hash(H10 | H11)

Htop=
hash(H0 | H1)

Validators, mining, fees and the network

• Bitcoin miners are carrying out validation of blocks

• Two incentives for miners to solve block hash task:
• reward of 6.25 bitcoin since May 2020; around NZ$216,000 (ish)
• value halves periodically; was 50₿ in 2009!

• by 2140 CE no further bitcoin increase

• ability to levy fees—commercial competition applies

• Broadcast communication between miners uses a
peer-to-peer protocol
• avoids central infrastructure… and knowing the miner set (!)

18COSC312 / COSC412 Lecture 7, 2023

Results from block validation

• Rate is ~10 minutes, but this is probabilistic
• e.g., might guess an appropriate nonce first off (if really lucky)

• Automatically helps serialisation: variance in mining
time is larger than the message broadcast time
• Miners want to publish results ASAP so to receive payment
• (Some potential attacks do involve holding back a solution.)

• Still possible for multiple answers to be broadcast, so…

19COSC312 / COSC412 Lecture 7, 2023

Blockchain forks need to be resolved

•When nodes hear multiple solutions they keep them all

• Subsequent mining is only done on your longest fork
• Extremely unlikely that parallel forks will continue for long
• Software bugs can cause long-lived forks—have happened!
• Probability distribution likely to clearly favour one branch

• Attacker with significant resources can try to keep fork
alive, but cost, coordination and probability won’t help
• (Some attacks involve late revealing of privately mined forks.)

20COSC312 / COSC412 Lecture 7, 2023

How/when is a transaction approved?

• Clearly the transaction has to be recorded in a block

• Two simple rules are applied:
• Relevant block must be in the longest fork of blockchain
• Five or more blocks must already follow it in the blockchain

• This causes a transaction clearing delay (in effect)
• Consider possible attacks, e.g., partitioning of network
• Probably impractically difficult to effect

21COSC312 / COSC412 Lecture 7, 2023

Conclusion

• Failures can threaten security by affecting availability
• Hardware and software problems

• Efficient means exist to reach decentralised consensus:
• Merkle trees for checking integrity
• Apache ZooKeeper, and etcd, within a known set
• Proof-of-work within permissionless blockchain such as bitcoin

• Discussed at high level blockchain & how bitcoin works

22COSC312 / COSC412 Lecture 7, 2023

